Ela on Condition Numbers for the Canonical Generalized Polar Decomposition of Real Matrices

نویسندگان

  • WEN LI
  • XIAO-QING JIN
  • Panayiotis Psarrakos
چکیده

Three different kinds of condition numbers: normwise, mixed and componentwise, are discussed for the canonical generalized polar decomposition (CGPD) of real matrices. The technique used herein is different from the ones in previous literatures of the polar decomposition. With some modifications of the definition of the componentwise condition number, its application scope is extended. Explicit expressions and computable upper bounds of these three condition numbers for the CGPD are presented. Besides, some first order normwise and componentwise perturbation bounds for the CGPD are also obtained. At last, some numerical examples are given to demonstrate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On condition numbers for the canonical generalized polar decompostion of real matrices

Three different kinds of condition numbers: normwise, mixed and componentwise, are discussed for the canonical generalized polar decomposition (CGPD) of real matrices. The technique used herein is different from the ones in previous literatures of the polar decomposition. With some modifications of the definition of the componentwise condition number, its application scope is extended. Explicit...

متن کامل

The Canonical Generalized Polar Decomposition

The polar decomposition of a square matrix has been generalized by several authors to scalar products on Rn or Cn given by a bilinear or sesquilinear form. Previous work has focused mainly on the case of square matrices, sometimes with the assumption of a Hermitian scalar product. We introduce the canonical generalized polar decomposition A = WS, defined for general m × n matrices A, where W is...

متن کامل

Ela Essential Decomposition of Polynomially Normal Matrices in Real Indefinite Inner Product Spaces∗

Polynomially normal matrices in real indefinite inner product spaces are studied, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements can be comple...

متن کامل

Ela Decomposition of a Ring Induced by minus Partial Order

The minus partial order linear algebraic methods have proven to be useful in the study of complex matrices. This paper extends study of minus partial orders to general rings. It is shown that the condition a < b, where < is the minus partial order, defines two triples of orthogonal idempotents, and thus, a decomposition of a ring into a direct sum of abelian groups. Hence, several well-known re...

متن کامل

Ela a New Decomposition for Square Matrices

A new decomposition is derived for any complex square matrix. This decomposition is based on the canonical angles between the column space of this matrix and the column space of its conjugate transpose. Some applications of this factorization are given; in particular some matrix partial orderings and the relationship between the canonical angles and various classes of matrices are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013